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A class of dynamical systems which locally correspond to a general first-order 
system of Euler-Lagrange equations is studied on a contact manifold. These 
systems, called self-adjoint, can be regarded as generalizations of (time-dependent) 
Hamiltonian systems. It is shown that each one-parameter family of symmetries 
of the underlying contact form defines a parameter-dependent constant of the 
motion and vice versa. Next, an extension of the classical concept of canonical 
transformations is introduced. One-parameter families of canonicfil transforma- 
tions are studied and shown to be generated as solutions of a self-adjoint system. 
Some of the results are illustrated on the Emden equation. 

1. I N T R O D U C T I O N  

In recent papers (Sarlet and Cantrijn, 1978a, b), we have discussed 
several aspects of general systems of first-order ordinary differential equa- 
tions, which are derivable from a fixed-endpoint variational principle, and 
are regarded as generalizations of Hamilton's equations. These systems were 
called self-adjoint (SA), the corresponding linear variational form being 
self-adjoint in the sense of the calculus of variations (see, e.g., Santilli, 
1978a). 

We recall that a general SA system in 2n dimensions is given by (see 
Sarlet and Cantrijn, 1978a) 

Cij(t,x)2J+Di(t,x)=O, i = l , . . . , 2 n  (1) 

where all coefficients are assumed to be of class C ~ in some open domain of 
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R 2n+l, (Cij)  is supposed to be regular (at least locally), and the following 
conditions are satisfied: 

Cij = -Cji  (2a) 

+ ' 7 -  =0  (2b) 
Ox k Ox J Ox' 

0%_ aDi og 
~t Ox j Ox t 

(2c) 

The distinction between conditions (2b) and (2c) is merely a consequence of 
the fact that time is not treated on the same footing as the other coordi- 
nates. However, when considering t as a supplementary coordinate, (2b) and 
(2c) simply express that the 2-form 

Codxi A d x J - D i d t A  dx' (3)  
i<j 

is closed in R 2n+ 1. According to the Poincar6 lemma this 2-form will then 
be locally exact, which guarantees the existence of C ~ functions R i ( i=  
1,...,  2n) and H such that 

Cij_  ORj OR i D~- OH_ OR, 
OX i OX j '  OX i O~ (4) 

General SA systems (1), (2) constitute an extension of the classical 
Hamilton equations, which are easily recovered when (Ci9) is taken to be the 
canonical symplectic matrix. Note that in Sarlet and Cantrijn (1978a), 
following the spirit of classical nonrelativistic mechanics, t was treated 
purely as a parameter in conditions (2). The relations (4) 'therefore were 
derived from a parametric version of the Poincar6 lemma. In the same spirit, 
coordinate transformations were considered to be time-preserving. In think- 
ing of the analog of classical canonical transformations, it then seemed 
natural (in this local context) to study regular, time-preserving transforma- 
tions 

( t , x ) ~ ( t , y ( t , x ) )  

which leave the 2-form (3) invariant up to terms containing dr. Such 
transformations were called "identity-isotopic" (or briefly Ic), adopting in 
this way a terminology introduced by Santilli (1978b). The reason for using 
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this peculiar denomination instead of the word canonical lies in the fact that 
solutions of a general SA system, considered as transformations from the 
initial state, fail to be I c transformations, unless all Cij's are time 
independent. This clearly raises questions concerning the possible generali- 
zation of other familiar concepts in Hamiltonian mechanics. Indeed, it is 
precisely this property of classical canonical transformations which lies at 
the heart of the formulation of the Hamilton-Jacobi theory and the theory 
of canonical symmetries and related conservation laws for Hamiltonian 
systems. 

Previously (Sarlet and Cantrijn 1978b) we have dealt with the gener- 
alized Hamilton-Jacobi problem, by enlarging the class of I c transforma- 
tions, still within the local context of the foregoing considerations. 

In the present paper we will focus our attention on the study of 
one-parameter families of transformations, symmetries, and conservation 
laws for general SA systems. We will aim at a more global approach to the 
problem, and in doing so we will show that an appropriate definition for 
generalized canonical transformations will simply arise from relaxing slightly 
the previous requirement of time preservation. 

We start by putting a contact structure on the trivial bundle R • M, M 
being an even-dimensional manifold and R the set of reals, allowing in this 
way an explicit mentioning of time as globally defined variable. A class of 
vector fields is defined (Section 2), corresponding locally to general SA 
systems of type (1), (4). For consistency in terminology, such vector fields 
will also be called "self-adjoint" (SA). They contain the usual definitions of 
Lagrangian systems on a tangent bundle and Hamiltonian systems on a 
cotangent bundle as special cases. 

In Section 3 some general aspects of one-parameter families of diffeo- 
morphisms are recalled. A notion of symmetry for SA-vector fields is 
introduced in Section 4, which is general enough to allow for arbitrary time 
variations, and is related to the existence of a first integral. 

In Section 5 we seek for a suitable definition of canonical transforma- 
tions, which stays as closely as possible to the spirit of the classical 
definition. We show in Section 6 that one-parameter families of canonical 
transformations are themselves generated by a SA-vector field, and we 
continue (Section 7) with the special case of canonical symmetries. The 
paper ends with an illustration and a discussion of the results. 

Although some of the material presented in this paper might also be 
derived from more abstract settings 2, it is our feeling that even in modern 
treatments the case of time-dependent Hamiltonian mechanics governed by 

2We here think for instance of the so-called momentum-map theory, which can be found, e.g., 
in Abraham and Marsden (1978). 
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a general contact form (i.e., not the pull-back of a time-independent 
symplectic form), or in other words the peculiarities of allowing an explicit 
time dependence of the matrix (Cij) in the local description (1), are 
generally overlooked. 

On the one hand, we aim in our approach at taking full advantage of 
the conciseness provided by the use of modem differential geometrical 
concepts. On the other hand, we want to keep the treatment readable by 
nonspecialists in the field. This means that we will only appeal to the most 
basic operations on vector fields and differential forms, and we will give a 
local representation of all results in which the classical treatment can be 
recovered. Perhaps the general framework of this paper is most closely 
related to a recent contribution by Crampin (1977), the main difference 
being that Crampin's study is Lagrangian in character, while the spirit of 
the present paper is more Hamiltonian. 

The notations adopted in this paper are the following: the sets of vector 
fields, p-forms, and diffeomorphisms (all of class C ~176 on a differentiable 
manifold N are, respectively, denoted by %(N), ~P(N), and Diff(N). The 
set of real-valued Coo functions on N is represented by Coo(N). The 
contraction of a vector field X and a general p-form a is denoted by ixa, 
whereas, in case a is a 1-form, the notation (X, a) is also frequently used. 

2. SELF-ADJOINT VECTOR FIELDS 

Throughout this paper we will be working on the trivial bundle • • M 
over the real line, with M a 2n-dimensional real C a-differentiable manifold. 
Henceforth, t will refer both to the time variable and the projection operator 
from R • M onto R. 

Suppose we are given a 1-form 0Ef~I(R• for which d0 is of 
constant rank 2n. The 2-form d0 then defines an exact contact structure on 
R • M. Its characteristic bundle, denoted by ~(dO), is one-dimensional. 

In addition, we require that for some characteristic vector field Y of d0 
the coupling with dt must be nowhere vanishing (i.e., (Y, dt)vaO). On the 
contact manifold (R • M, d8) we then introduce the following concept. 

Definition 2.1. A vector field X on R •  is called self-adjoint (SA) 
with respect to the given contact structure d0 iff 

(i) ixd8=O (Sa) 

(ii) ( x ,  ,/t) = 1 (Sb) 
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The first of these conditions states that X must be a characteristic 
vector field of dO. Since C(dO) is one-dimensional and taking into account 
the above assumption made on dt, we immediately obtain the following 
corollary. 

Corollary 2.1. Conditions (5a) and (5b) define a unique vector field 
on R •  [] 

One also easily verifies that the original 1-form 0 may be replaced in 
the above definition by any 1-form 0' for  which dO=dO', i.e., which locally 
differs from 0 by at most a total differential. 

Let us now first check that this definition locally gives rise to a 
self-adjoint system of differential equations of type (1). Later on, for 
comparison with the description of SA systems given in Sarlet and Cantrijn 
(1978a), we will be more specific about the choice of a model for local 
representation of our results. For the time being it suffices to say that in any 
local coordinate system (t, xl , . . . ,  x 2n) on N •  writing 0 as 

O= Ridx i - H d t  

we get 

dO= ~ Cijdx' A d x J - D i d f A  dx i 
i<j 

with Cgj and D i as in (4). In view of the assumptions made on dO and dt, the 
matrix (Cig) must be regular. If the self-adjoint vector field with respect to 
dO is represented by X=g;iO/Ox ~ +rlO/Ot, we derive from (5) the following 
relations for its components: 

~/=1 (6a) 

CijliJ+Di=O, i=1  . . . . .  2n (6b) 

Oj~J = 0  (6c) 

(where summation always runs from 1 to 2n). From (6b) we obtain 
~i= _CiJDj, with (CiO-=(Cij) -1. Herewith (6c) is seen to be identically 
satisfied. Hence, taking into account (6a) and replacing D i by its explicit 
expression, the system of differential equations associated with X can be 
reduced to 

~Rj ) 
2i=ci j  OIt+ i=1 ,  ,2n 

~x: - ~  . . . .  
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where the dot indicates differentiation with respect to t. This is precisely the 
normal form of a general SA system (I). Before proceeding it is worth 
mentioning that the definition of SA vector field contains the following 
special cases: 

(1) Suppose M is a symplectic manifold on which an exact symplectic 
form ~ = do is given (e.g., let M be the cotangent bundle of an n-dimensional 
manifold and p the canonical 1-form Pi dqi) �9 Let Pz: R X M ~  M denote the 
natural projection operator and define a 1-form 0 on R X M by 0 = P l P - H d t  
for some function H ~ C ~ ( R  XM). The 2-form 

dO=p~o~-dH A dt 

then satisfies all the required conditions and the SA vector field correspond- 
ing to this contact form is precisely the time-dependent Hamiltonian vector 
field with Hamiltonian H, as defined according to the Cartan point of view 
(see, e.g., Hermann, 1968). 

(2) Let M be the tangent bundle TN of some n-dimensional manifold N 
and consider a regular (time-dependent) Lagrange function L E C ~(R X TN). 
With respect to a set of natural coordinates (t,q~,...,qn,~ll . . . . .  0 n) on 
R X TN, consider the so-called Cartan form 0 associated with L, 

O=Ldt+ OL (dqi Oidt) 

The assumed regularity of L implies dO to be of rank 2n. With this 
particular choice for 0, equations (5) coincide with the definition of 
the Lagrangian vector field corresponding to L (see Crampin, 1977, or 
Sternberg, 1964, p. 159). 

Before dealing with the study of symmetries for SA systems we first 
briefly recall in the next section some general properties concerning one- 
parameter families of diffeomorphisms on R • M. 

3. ONE-PARAMETER FAMILIES OF T R A N S F O R M A T I O N S  

Let ~ } be a smooth one-parameter family of transforma- 
tions from R XM onto itself, i.e., (i) F x ~Diff(R •  (ii) F 0 is the identity 
map on R •  (iii) the map F: R X R •  with F ( k , t , m ) =  
Fx(t, m) is of class C ~. 

Since no group structure has been assumed, ~will  not define a (unique) 
vector field on R X M. However, one can always associate to ~- a family of 
vector fields in a very precise way. To make this clear, the usual procedure 
consists in first passing from the given family oy to a one-parameter group of 
transformations ~=(G,I/~@R) on the extended bundle R X(R •  de- 
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fined by 

G~(Tt, t, m) =.(X +/*, Fx+~[Fx-'  (t, m) ] )  (7) 

The G~'s are dearly C ~176 diffeomorphisms forming a group under composi- 
tion. Hence, they determine the flow of a vector field Z on R • (R • M), the 
so-called "infinitesimal generator" of ~. When projecting the integral curves 
of Z onto the original space R • M we recover the orbits defined by the 
given family oy. From (7) it is seen that 2~ can be split up as follows: 

a 
2 =  + z (8) 

with Z a 7t-dependent vector field on R • M. For each fixed value of 7t we 
further introduce the shorthand notation 

Z[ {x}x(R XM) =Z~, 

Corresponding to 9" we have thus constructed in an unambiguous way a 
one-parameter family of vector fields Z x on R X M. 

Conversely, assume we are given a smooth one-parameter family of 
vector fields Z x E %(R • M).  The Zx's define a vector field 2~ on R X (R • M )  
according to (8), with Z(7t, t, m)=Zx(t, m). In a neighborhood of each 
point of R X(R •  2~ induces a local one-parameter (pseudo-) group of 
diffeomorphisms (G~[/~ E l} ,  with I some open interval centered at the origin 
and where the G~'s are of the form G~(Tt, t, rn)=(Tt+/~, G,(Tt, t, m)) for some 
differentiable mappings G~. Putting 

F~(t, rn)=G~,(O,t,m) 

we obtain a local family of diffeomorphisms {F~I/xEI} on R •  which, by 
construction, is completely determined by the given family of vector fields 
Z x . 

To close this section we mention one of the basic formulas from the 
calculus of differential forms, which will be of great use later on. Consider 
again a smooth one-parameter family of transformations {Fx[TtER} on 
R • M, together with a smooth family of p-forms {a x [ 7t E R }. The following 
relation holds: 

d7t --~ ) + F~( izadax) + d[ F~( izxaa) ] (9) 

(Guillemin and Sternberg, 1977, p. 110). 
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4. SYMMETRIES AND RELATED CONSERVATION LAWS 

Although it constitutes one of the major objectives in many treatments 
on dynamical systems, no precise and generally accepted definition of 
symmetry seems to exist. The way in which the concept of symmetry enters 
a certain theory often depends for instance on the specific nature of the 
systems it will be applied to, as well as on the general framework in which 
the analysis takes place (e.g., analytical or geometrical). In the case of a SA 
system it seems quite natural to introduce a notion of symmetry in terms of 
the contact form dO which completely determines the structure of the 
corresponding vector field [up to some "normalization" imposed by (5b)]. 
We therefore propose the following definition. 

Definition 4.1. A mapping F ~  Diff(R • M) is called a symmetry of the 
contact form dO iff 

F, dO=dO (10) 

Before investigating the influence of a symmetry of dO on the corresponding 
SA vector field, it may be advisable to give a precise meaning to the 
expression "symmetry of a vector field." Henceforth we adopt the following 
definition. 

Definition 4.2. A mapping FEDif f (R •  is called a symmetry of a 
vector field Y~%(N •  iff 

F, Y= Y 

According to this definition, a symmetry of a vector field transforms the set 
of integral curves of that vector field onto itself (without altering the 
parametrization of these curves). Let us now consider a symmetry F of dO. 
If F ,  acts on (5a) we obtain, in view of (10), 

iF, xdO=O 

Hence, F,X belongs to C(dO). The latter being one-dimensional and 
containing X, there must exist a function f ~  C~(R • M) such that 

F,x=fx (11) 

Consequently, a symmetry of dO will in general not be a symmetry of the 
SA vector field X (in the sense of Definition 4.2). From (11) we can only 
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conclude that F permutes integral curves of X among themselves, allowing, 
however, a change of parametrization along these curves. 

For the remainder of this section we will be dealing with one-parameter 
families of symmetries of dO. 

For convenience we henceforth assume in this section that M (and thus 
also R •  is simply connected. Let 6Y={Fa[)t~R} be a smooth one- 
parameter family of transformations whereby each Fx is a symmetry of dO, 
i.e., 

( F x ) , d O = d O  (12) 

Since R X M is simply connected, every closed 1-form is globally exact. 
Hence, (12) implies the existence of functions S x ~C~(R •  smoothly 
depending on )t, such that 

( r ),O=O+aS  

or equivalently 

o=rt(o+ds ) (13) 

[If R • M is not simply connected, (13) of course still holds locally.] 

Proposition 4.1. Corresponding to each smooth family ~-= {Fxl)t ER } 
of dO symmetries there exists a )t-dependent first integral of the SA vector 
field X, which in terms of the S x is defined by 

dS;~ 
Wx = ~-~  + L z S ~ + i z fl (14) 

Proof Applying (9) to (13) we obtain 

with Z x defined as in Section 3. Rearranging terms we get 

where Lz~ is the Lie derivative with respect to Z x. Each F x being a 
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diffeomorphism, it follows that 

i zxdO = - d W  x 

with W x given by (14). The Wx's are real-valued 
smoothly depend on X. Using (15) and (5a) we get 

L x W  x = i x d W  x = - i x i  zxdO = i z i xdO = 0 

(15) 

C ~~ functions which 

which expresses that the functions Wx, defined by (14), are first integrals 
of X. [] 

R e m a r k  4.1. By means of (15) it is possible to derive a useful char- 
acterization for the infinitesimal generator 2~ of the one-parameter group 
associated with ~ (see the previous section). First of all we observe that the 
Wx's given by (14) define a C ~ function IYV on R X(R XM)  by l~(h, t, m) 
= Wx( t ,  m) .  Next, we consider the 1-form 

O=p~O- ~dX 

where P2 denotes the projection operator from R X(R •  onto R XM. 
Taking into account (15) and the definition of Zx, one easily verifies that 
the following relations hold: 

i ~d O=O,  (2 ,  d~ )  = 1 (16) 

where d now stands for the exterior derivative on R X(R XM).  So it is seen 
that Z satisfies relations which are formally analogous to those defining a 
SA vector field. 

R e m a r k  4.2. Suppose the given family ~ o f  dO symmetries constitutes a 
one-parameter group, i.e., Fxl o Fx2--Fxl+x 2 for all (X l, ~kZ)E~ 2. The corre- 
sponding family of Zx's then reduces ~o one single vector field, namely, the 
infinitesimal generator Z of the group. In this case (15) still holds, but one 
can prove that, in view of the group property of the Fx's, the expression on 
the right-hand side of (14) now can be made independent of ~. 

Let us now deal with the converse problem: given a first integral of the 
SA vector field X (which may possibly depend on a parameter), can one 
derive from it a one-parameter family (or group) of symmetries of dO. 

The answer to this question first requires a closer inspection of the map 
which assigns to every vector field YE%(R XM)  the 1-form iydO. This 
map is clearly linear and possesses a one-dimensional kernel, namely, 
C(dO) .  In this connection we mention a fe w properties which, in the special 
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case where 0 is the Cartan form corresponding to a Lagrangian system, were 
considered in some detail by Crampin (1977). The proofs are completely 
analogous to those given there and will therefore be omitted. 

Lemma 4.2. Let aEf~l(N •  be given; then there exists a vector 
field YE%(R •  such that 

ivdO=o~ (17) 

iff (X, a ) = 0 ,  where Xis  the SA vector field corresponding to dO. 
[] 

Corollary 4.3. For a given function W @ C ~ ( R  •  there exists a 
vector field YE%(R •  such that 

i v d O = d W  (18) 

iff W is a first integral of X. [] 

Whenever Y is a solution of (18) (for a suitable W) the Lie bracket of Y 
and X belongs to C(d0), yielding 

[Y, xl=gx 

for some g ~ C~176 X M). This immediately follows by calculating i~v ' xldO, 
using the relation i Ey ' xl = i v L x -  Lx i r ,  and taking into account the defini- 
tions of X and Y. 

Notice, however, that solutions of (17) or (18) are not uniquely de- 
termined. Indeed, suppose YC%(N • M) satisfies one of these relations (for 
some a or W); then any vector field of the form Y+fX ,  with f E  C~(N • M), 
will also be a solution and one can prove the following interesting result 
(Crampin, 1977): 

Lemma 4. 4. Among all solutions of (18) for a given first integral W 
of X, there is precisely one vector field Y0 which commutes with X 
(i.e., [Y0, X]=0)  and for which (Y0, dt) =0. [] 

It may be worth mentioning that the previous lemma still holds when the 
second condition for Yo has been replaced, e.g., by (110, d t ) =  1. (This only 
demands a slight modification in the proof.) As one can easily verify, this 
particular solution of (18) (which commutes with X and for which the time 
component is unity) is precisely the SA vector field corresponding to the 
contact form d( O + Wdt  ). 

Anyhow, Lemma 4.4. tells us that (18) has a solution I10 the (local) flow 
of which leaves dt invariant and moreover determines a symmetry group 
of X. 
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More in line with the present discussion we can prove the following 
converse to Proposition 4.1. 

Proposition 4.5. Given a first integral W of X, possibly depending on ?~ 
in a smooth way, (18) defines a smooth family of vector fields to which can 
be associated a (local) one-parameter family of symmetries of dO. 

Proof (a) In case Wis independent of ?~, for every solution Y of (18) we 
have 

LvdO=d(ivdO)=O 

hence Y defines a (local) one-parameter group of symmetries of dO. (b) For 
the general case we can define a smooth family of vector fields Zx through 

i zdO= dW x 

If {F~) is the (local) one-parameter family of transformations associated 
with these Z x (see the construction in Section 3), we get in accordance with 
(9) 

d/~ 

Hence, F~*dO=F~dO= dO, since F 0 is the identity mapping. This completes 
the proof. �9 

Remark 4.3. Until now the assumption that the given contact form is 
exact was not really essential. If one is not interested in having an explicit 
formula for Wa as in (14), the whole analysis could as well have been 
performed starting from a general contact form (i.e., a closed 2-form of 
maximal rank). 

Summarizing the results of Propositions 4.1 and 4.5, we have seen that 
a direct link can be established, in both directions, between constants of the 
motion and symmetries in the sense of Definition 4.1. This notion of dO 
symmetries is, moreover, large enough to allow for general transformations 
of both "time and space variables." In the next section we will be dealing 
with a more restricted class of diffeomorphisms, with the purpose of 
identifying an appropriate notion of canonical transformations in this 
context, which is close in spirit to the conventional notion and yet helps 
overcome some of the difficulties indicated in the Introduction. We will 
come back to the study of symmetries within this restricted class of 
transformations at the end. 
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5. CANONICAL TRANSFORMATIONS 

In our study of SA vector fields the Hamiltonian model has always 
served as a guide. Also now, when we are looking for an extension of the 
classical notion of canonical transformations, we go back to the conven- 
tional definition, which says in the first place that a transformation is 
canonical if every Hamiltonian system is transformed into a Hamiltonian 
system. Roughly speaking this means that, if we think of the contact form 

dpi Adq i - dH Adt  

a canonical transformation preserves the "symplectic part" dpi Adq i, while 
no specific restriction is imposed on the way the term containing dt is 
transformed (apart from the fact that canonical transformations are usually 
considered as being time preserving). 

We will now elaborate a similar idea in the case of general SA vector 
fields on R X M. For  that purpose it seems useful to make some preliminary 
comments on the structure of exterior forms on the trivial bundle R • M. 

First we notice that each p-form a on R X M  (with l~<p<~2n+l)  
admits a splitting into 

a = a  d) + a  (2) Adt  (19) 

where a (2) E fU'-~(R •  and ia/ata O) =0,  i.e., a d) contains no terms in dr. 
We then introduce the following equivalence class [a] of p-forms a 

(1 <~p<~2n+ 1): 

[a]= {/~aP(R X M ) l aAd t=  fl Adt } (20) 

From (19) and (20) we see that two p-forms a and/3 will be equivalent iff 
a(1) =fl(1). 

Finally, for a ~ g P ( R  X M )  we put 

a [ . ]=  [ .])  (21) 

with the remark that d[a]4=[da]. 
Henceforth 0 will always represent a 1-form on R • M such that dO is a 

contact form which determines a SA vector field according to Definition 
2.1. In view of (19) 0 can be written as 

0 = 0  d) - -Hdt  
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for some H~C~(R•  (0 {~) here replaces the canonical 1-form pidq i 
occurring in the phase space description of Hamiltonian systems.) 

It seems to us that the old idea of canonical transformations can be 
best approached in the present context by requiring for F E  Diff(R X M) 

r,d[O]=d[Ol 

Moreover, since canonical transformations should preserve the structure of 
SA vector fields (with t as a privileged coordinate), some condition must be 
imposed on the transformation of time. From the local study of SA systems 
(Sarlet and Cantrijn, 1978a) we already know that time preservation would 
be a too restrictive condition. In view of (5b), however, it will be sufficient 
to propose F, dt=dt, allowing in this way translations of time. In fact, one 
could more generally require F, dt=k dt with k a diffeomorphism on the 
time axis, but this would merely consist in a rescaling of time. 

Combining the previous arguments we finally arrive at the following 
definition. 

Definition 5.1. A map F E D i f f ( R •  
transformation with respect to [0] iff 

(i) F, dt=dt 

(~) 

will be called a canonical 

(22) 

F,d[Ol=d[O l (23) 

Lemma 5.1. Let FEDiff(R XM) be given, with F, dt=dt; then 

r,d[O]=d[O]caF, dO=dO' for some 0 ' E l 0 ]  

Proof In view of (21) and the definition of the equivalence classes (20), 
the implication from left to right is obvious. Conversely, suppose F, dO = dO' 
for some O'E[0]. We then have to show that for all 01 ~[O] there exists a 
0{E[0] such that 

F, dO 1 =dO{ (24) 

By definition, 0~ E[0] implies 01 =O+'!'dt for some 't' E C~(R •  Conse- 
quently, taking into account (22), we have 

F, dO~ = F,(  dO + dxt' Adt ) 

=dO' + d( ~o r - '  ) Adt 

=d(O '+~or -Xd t )  

which proves (24) with 0~ = 0' + (g' o F - 1 )d t .  [] 
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From this lemma we can immediately derive the following characteriza- 
tion of canonical transformations. 

Corollary 5.2. F~Diff (R •  is canonical with respect to [0] iff 
F, dt= dt and 

F, dO=d( O-ep dt ) (25) 

for some (o E C~(R •  [] 

In this way we see that our definition of canonical transformations is 
equivalent to the one adopted, e.g., in Abraham and Marsden (1978), except 
for the possibility of time translations. 

Corollary 5.2 also implies that whenever F is canonical we have 

( F, dO ) Adt=dO Adt (26) 

The converse--viz., (26) together with F, dt = dt imply F canonical--does 
not hold in general. The full equivalence of both statements is obtained 
when M is simply connected. 

Proposition 5.3. If M is simply connected, then FEDiff(R •  with 
F, dt=dt, is canonical with respect to [0] iff (26) holds. 

Proof We have noticed already that F canonical implies (26). Con- 
versely, suppose (26) holds, yielding 

r ,  dO=dO+aAdt (27) 

for some a Efll(R XM), from which it follows with the notations of (19), 

da (1) Adt=O 

o r  

(da('))(l)=0 (28) 

Now regarding a (1) as a time-dependent 1-form on M and denoting by d M 

the exterior derivative on M, (28) clearly implies dMa (1) =0. Hence, a (t) = 
dMfl, for some time-dependent C ~176 function t ,  since M is simply connected. 

Regarding fl as being defined on R • M, (27) finally can be rewritten as 

F, dO=d(O+Bdt) 

which completes the proof in view of Corollary 5.2. [] 
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For a local characterization of canonical transformations we first 
introduce the following local model. Let M-- U be some open subset of R 2~ 
and put 

O-- Ridx t - H dt (29) 

for some functions Ri, H E  C~(R X U). We then have 

dO= ~ Cijdx i A d x J - D ~ d t A d x  i 
t<j 

(30) 

with C u and D i again as in (4). 
A transformation F on R X U  will be denoted by ( t , x ) ~ ( t ' ( t , x ) ,  

y(t ,  x)) and should be interpreted in the "active" way, i.e., F transforms a 
point with coordinates (t, x) into a point with coordinates (t', y). Using (22) 
and (26) it is straightforward to verify that if a C ~ diffeomorphism F: 
R X U ~ R  X U, (t, x ) ~ ( t ' ( t ,  x), y(t,  x)) is canonical with respect to [0], the 
following relations hold: 

t '= t+ ' r  ( r E R )  (31a) 

Cij(t ' ,  y)=--Ckt( t ' - - 'r ,x( t ' ,  y ) )  
~X k OX l 

Oyi Oyj (31b) 

Moreover, according to Proposition 5.3, if U is simply connected each 
transformation satisfying (31) will be canonical. For ~-=0 we recover the 
class of identity-isotopic transformations studied in Sarlet and Cantrijn 
(1978a). 

So far nothing special has been said about the influence of canonical 
transformations on SA vector fields. In this connection we first observe that 
for each 0' E[0], dO" is a contact form on ~ XM which defines a SA vector 
field according to equations (5). 

Proposition 5.4. If F~Diff(R XM) is canonical with respect to [0], 
then for each 01E[0] there exists a 02 E[0] such that F .  converts the SA 
vector field corresponding to dO 1 into the SA vector field corresponding to 
dO 2. 

(The proof is an immediate consequence of the Definitions 2.1 and 5.1 
and Corollary 5.2.) II 

In terms of the local representation introduced above, this proposition 
can be translated as follows. Suppose FEDiff(R X U) is a canonical trans- 
formation with F(t, x)=( t+T,  y(t,  x)), then to each H E C ~ ( R  XM) there 
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corresponds a function KE C~(R X M) such that the SA system 

~ '  "t x )+  (t, x) ~i=ciJ(t' x) ~x-St ' W- 

is converted into 

-yi=ciJ(tq-'r'Y)[ ag (t-f-r'Y)+~RJ ] t0Y -~7(t+~'Y) 

The major objection against the concept of identity-isotopic transformations 
(i.e., time-preserving canonical transformations) was that the evolution of a 
general SA system could not be described in terms of such transformations. 
In this respect, the present definition of canonical transformations yields a 
considerable improvement. We have indeed the following proposition. 

Proposition 5.5. The flow of a SA vector field consists of canonical 
transformations. 

Proof Equations (5a) and (5b) immediately imply 

LxdO=O and Lxdt=O 

Hence, both dO and dt are invariant under the flow of X, which proves the 
above assertion. [] 

In the next two sections, which deal with one-parameter families of 
canonical transformations and canonical symmetries, it will again be as- 
sumed that M is simply connected. 

6. ONE-PARAMETER FAMILIES OF CANONICAL 
TRANSFORMATIONS 

Let 0 E ~ I ( R •  be given as before and consider a smooth one- 
parameter family ~ =  (FxlX ER } of canonical transformations with respect 
to [0]. 

By Definition 5.1 we then have for each ~ ~ R 

(Fx),d[Ol=d[O ] (32) 

and 

( Fx ),dt=dt (33) 
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From (33) it follows that 

( Fx),t=t+r()t ) (34) 

for some r E C~(R), with r(0)= 0 (since F 0 is the identity map). According 
to Corollary 5.2 there will exist a smooth family of functions ~x E C~176 • M) 
such that (32) may be replaced by 

( Fx ).dO=d( O-epx dt ) 

Since, by assumption, R X M is simply connected, the previous relation 
implies the existence of functions S x E C~(R X M), smoothly depending on 
2~, such that 

( & dt + (35) 

We now seek for a suitable characterization of the vector fields Zx, 
associated with ~. From (34) one can immediately deduce 

( Z  x, dt) ='r'()~ ) (36) 

with ~'=d~/dX. 
After exterior multiplication of (35) with dt and taking into account (34), we 
get 

O Adt= F: [ ( O + d& ) Adt] 

Differentiation of both sides with respect to X and making use of (9), gives 

After a straightforward calculation we obtain 

d � 9  
+ F~[ ( izadO )Adt] 

+F~({Za, dt}dO )-dF~, ( ( Z x, dt>O ) 

The last two terms on the right-hand side cancel in view of (36), with ~"(?~) a 
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constant function on R • M, which finally yields 

( izxdO + dWx ) Adt=O (37) 

where W x is again given by (14). 
Consequently, there must exist a parameter-dependent function 't' x E 

C~(R XM) such that 

iz dO + dW x = ~I' x dt (38) 

Moreover, taking the inner product of (38) with the SA vector field X 
corresponding to dO, it is readily seen that 

L x W  x = ' t  x (39) 

Summarizing we can say that the vector fields Z x determined by the given 
family oy of canonical transformations satisfy the relations (36) and (37) or, 
equivalently, (36) and (38) with ,t' x given by (39). Conversely one can also 
prove the following proposition: 

Proposition 6.1. For each ~'GC~(N) and each smooth family (WxlX  
R}, with WxEC~(R •  the relations (36) and (38) [together with (39)] 
uniquely define a family of vector fields Z x. Moreover, these vector fields 
locally determine a one-parameter family of canonical transformations. 

Proof Because of (39) and (5b) we immediately have ( X , - d W x +  
4yxdt ) =0. Hence, according to Lemma 4.2 there will exist a smooth family 
of vector fields Yx for which 

irxdO= - d W  x +"It x dt 

Putting Z x = Yx -(~Yx, d t ) -  T'()t))X, we define new vector fields, satisfying 
(36) and (38). They are uniquely determined by these relations. 

Let (F~} now be a local family of transformations associated with the 
Zx's (see Section 3). We then find, using (9) and taking into account (36) 
and (38) [with r'()t) considered as a constant function on R •  

and 

:d[ Adt)] :o 
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(Hereby it is of course understood that vector fields and differential forms 
are restricted to a suitable open subset of R • M.) Consequently, both F~*dt 
and F~(dOAdt) are independent of/~. Since F 0 is the identity map, we find 

F~ dt = dt 

F~*( dO Adt )=dO Adt 

Applying Proposition 5.3 (possibly after restricting the domain of definition 
of the F~'s) it is seen that the F~'s are indeed local canonical transforma- 
tions. [] 

From Hamiltonian mechanics we know that each one-parameter family 
of canonical transformations is generated by a Hamiltonian vector field 
(see, e.g., Saletan and Cromer, 1971). We now show that a similar property 
holds within the framework of general SA systems. Suppose ~ =  (Fxl X E R } 
is a one-parameter family of canonical transformations with respect to [0], 
such that (32) and (34) hold. The vector fields Zx, induced by ~ on R • M, 
are completely determined by (36) and (38) [together with (39)]. 

To avoid confusion in notation we will denote the set of reals by R', 
when referring to the values of X, and by R" when referring to the time axis. 
Let ~ = {Gr[ # ~ R } be the one-parameter group of transformations defined 
on R' • R" • M, corresponding to ~, with infinitesimal generator 27 ~ %(R' 
• R " •  M)  (see Section 3). In view of (34) the diffeomorphisms d r here have 
the structure [see (7)]: 

d~( X, t, rn )=( X +l~, t+'r( X +t~ ) -~ (  X ), G~(Tt, t, m ) ) 

where Gs is a C ~ map from R' • R" • M onto M. By means of (36) and (38) 
we now look for a complete characterization of 2?. For that purpose we first 
introduce the following 1-form on R' • R" • M: 

O=p~O- WdX (40) 

with P2: R ' • 2 1 5 2 1 5  the natural projection operator and 
W(X, t, m)=  Wx(t, m). Next, we define a function qzEC~(R'•215 by 
xt'(X,t,m)=qfx(t,m). Using (36) and (38) one easily verifies that the 
following relations hold: 

i ydO=q" d t -  "t"r'dX (41a) 

(2,  dt)=~" (41b) 

(2 ,  d?t) = 1 (41c) 
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A first integral of 27 is immediately given by fiX, t, m)=t -~- ( ) t ) ,  with 
f~C~176215215  Each cEN" is a regular value of f and hence, the 
corresponding sets Vc= f -1(c) are (2n+  1)-dimensional submanifolds of 
R'• N"• M. The collection of sets Vc(c ~ N") constitutes a disjoint covering 
of N' • N" • M. Moreover, each V~ is diffeomorphic to R' • M. A diffeomor- 
phism is obtained by taking the restriction to V~ of the projection operator 
from N ' •  N " •  M onto N ' •  M. This amounts to saying that we can choose 
X as a global coordinate on V~. 

Our purpose is now to consider the reduction of 2? onto some V~. (For a 
general and rigorous treatment on the reduction of dynamical systems, see, 
e.g., Marmo et al., 1979a, b.) For a fixed c~N"  let j~ be the canonical 
injection from V~ into N' • N" • M (i.e.,j~ is the identity map of N' • N" • M 
restricted to V~). From the definition of V c it then follows that 

j*dt=~"d)t and j*d)t=d)t (42) 

We further put 

j*O= 0r (43) 

Since f is a first integral of 27, the latter will be tangent to V~ at each point of 
V~. Hence, the restriction of 2 to V~"defines a true vector field which will be 
denoted by 27c. Moreover, also as a result of this tangency, it is seen that for 
each ~ ES2P(~'• R " •  

j*(ido~ ) =ida(dYe) (44) 

Using (44) and taking into account (42) and (43), the pull-back (by Jc*) of 
(4ta) onto V~ becomes 

i~cdO ~ = 0  (45a) 

whereas, in view of (42), the pull-back of (41b) and (41c) both yield the 
same relation 

(2~, d)t) = 1 (45b) 

Through the diffeomorphism between V c and R ' •  M mentioned before, we 
see that Zc can clearly be thought of as a SA vector field on R ' X M  with 
respect to dt~ c. 
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Replacing c everywhere by t, we can summarize the preceding as 
follows: 

Theorem 6.2. Each one-parameter family of canonical transforma- 
tions {F x I X E R } is generated by a parameter-dependent SA vector 
field Z t. [] 

To close this section we illustrate Theorem 6.2 on the local model 
introduced in the previous section [with M =  UC N 2n, 0 and dO being given, 
respectively, by (29) and (30)]. 

Suppose {FxlX E R } is a one-parameter family of canonical transfor- 
mations with respect to [0], where F x EDiff(R • U) is of the form 

Fx(t,x)=(t+'r()t ), y (h , t , x ) )  

From its definition in equations (40) and (43), and taking into account the 
relations (42), it is clear that the 1-form/~ here will read 

Ot(?~, y)=Ri(t+':(~ ), y )dyi-['r'(?~ )H(t+~(?~ ), y) 

+ W(X, t + ~-(X ), y )]d?~ (46) 

The scope of Theorem 6.2 then means that the functions y(?~, t, x) are the 
solutions of the SA system 

]dyJ {OW(X,t+z(X),y)  
Ci:(t+'f(X)' Y:-d-X - Oy i +- ~ [r ~yg 

+ ORi(tq-j__~( ~ )' Y ) }= 0 

with t as parameter and initial value y(O, t, x)=x. 

(47) 

7. C A N O N I C A L  S Y M M E T R I E S  

In this section we study symmetries of a SA system in terms of 
canonical transformations. 

Definition'7.1. F E  Diff(R •  is called a canonical symmetry iff F i s  a 
symmetry of dO and moreover satisfies F.dt=dt. 
Obviously, each canonical symmetry is in particular a canonical transforma- 
tion. 



Generalized Hamiltonian Systems 667 

In Section 4 it was seen that a general symmetry of dO need not be a 
symmetry of the SA vector field X (in the sense of Definition 4.2). When 
dealing with canonical transformations, however, both concepts of symme- 
try are equivalent. Indeed, we have the following proposition. 

Proposition 7.1. A canonical transformation F is a symmetry of dO iff it 
is a symmetry of the corresponding SA vector field. 

Proof If F is a symmetry of dO we already know that F,X=fX  for 
some fEC~(R • M) (see Section 4). From (5b) we then obtain 

f (X ,  F.dt) = 1 

which, expressing that F is canonical, yields f =  1. Hence, F is a symmetry of 
X. Conversely, if F.X= X it follows from (5a) that 

ixF, dO=O (48) 

F being a canonical transformation we also have F.dO=dO-deoAdt, for 
some r E C~(R • M) (see Corollary 5.2). Substitution into (48) gives, using 
(5a) and (5b), 

O=i x( ddp/kdt )= ( i xdep )dt-deo 

Consequently, deoAdt=O and so F, dO=dO, which completes the proof. �9 
All results of Section 4 especially hold for canonical symmetries. In 

particular, each one-parameter family of canonical symmetries (Fx])~ E R), 
with (Fx),t=t+.r()t), defines a parameter-dependent vector field Zx for 
which 

izxdO=-dW x and (Zx, dt)=r'()t ) 

The functions W x hereby determine a parameter-dependent constant of the 
motion of the SA vector field corresponding to dO. Conversely, combining 
Lemma 4.4 and Proposition 4.5, it follows that each first integral of the SA 
system (5) can be (locally) generated by a one-parameter group (or family) 
of canonical symmetries. (This is also implicitly contained in Proposition 
6.1, if W x is taken to be a first integral of X and hence, 'It x = 03 In the next 
section we illustrate some of the previous results on a local example. 

8. EXAMPLE: E M D E N  E Q U A T I O N  

Consider the second-order differential equation 

3 ~ + 2 2 + x 5 = 0  (49) 
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which was introduced in astrophysics by Emden. Putting y = ~ one can pass 
to the equivalent first-order system 

~ = y  

(50) 
~-- - x  5 - 2 y / t  

As can be readily verified, these equations define a SA system correspond- 
ing to 

dO=-t2dxAdy-(t2xS + 2ty)dxAdt-t2ydyAdt (51) 

where 

O=t2ydx-�89 2 + ~x6)dt 

In the notations of our local description [(29) and (30)], we have R 1 = t2y, 
R 2 =0,  H = �89 + �89 The SA vector field is here given by 

X=Y~----x+(-xS-2--~-Y)~---f + 8t 

In the present case M can, e.g., be identified with R 2. However, in order 
that dO would be of constant rank 2, one should restrict the time axis to 
some open interval not containing the origin. Obviously, restrictions of that 
kind do not affect the validity of the previous results. 

From a simple inspection of dO, one can detect the following one- 
parameter family of dO symmetries: 

x=Y~e x, _ -  3x (52) y-ye  , t=t-e -2x 

These transformations moreover constitute a group, the infinitesimal gener- 
ator of which is given by 

Calculating irdO we obtain 

ivdO = - (2t3x 5 + t2y )dx- ( t2x + 2t3y )dy- (t2x 6 + 2tyx + 3t2y 2 )dt 

which is indeed minus the total differential of the function 

W=t3(y2 +�89 (53) 
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Hence, we conclude that W is a first integral of the SA system (50), 
recovering in this way a well-known result (see, e.g., Logan, 1977, p. 52). 

Whereas the transformations (52) are general symmetries of dO, it 
follows from the discussion at the end of the previous section that the same 
constant of motion W also corresponds to a one-parameter group of 
canonical symmetries. An infinitesimal generator of such a group is ob- 
tained by adding to the generator Y of (52) a multiple of X, say fX, such 
that (Y+fX, dt) becomes a constant. Let us, e.g., choose f =  1 - ( Y ,  dt) = 1 
+2t.  The vector field Z =  Y+(1 +2t)X, which is explicitly given by 

clearly satisfies izdO= -dW,  with W given by (53), and the flow of Z will 
consist of canonical symmetries of dO. However, as can be seen from the 
structure of Z, the construction of this flow, i.e., the integration of the 
differential equations corresponding to Z, becomes extremely difficult. 

9. DISCUSSION 

In analogy with the definition of time-dependent Hamiltonian vector 
fields (within the Cartan description) we have introduced a SA vector field 
on a contact manifold (R • dO) as a characteristic vector field of dO, for 
which the "time" component is unity. 

The study of symmetries of SA systems revealed that, although symme- 
tries of dO do not constitute the most general transformations mapping 
integral curves of the SA vector field into integral curves, they are particu- 
larly useful. First of all there is a very simple link between symmetries and 
conservation laws, and secondly the framework is large enough to allow 
both space and time transformations. We have also introduced a generalized 
notion of canonical transformations which should not necessarily be strictly 
time preserving. As a matter of fact, the possibility for time translations was 
crucial for the result that the flow of a SA vector field is canonical. 

We further showed that a correspondence in both directions between 
symmetries and constants of the motion also exists within the restricted 
class of canonical transformations. This means for instance that, on theoret- 
ical grounds, no constants of the motion are lost if one would only want to 
deal with canonical symmetries of SA systems. However, as we have learned 
from a simple example like the Emden equation, the detection of canonical 
symmetries might become extremely difficult in practice, even in those cases 
where a close inspection of dO suffices to produce a general dO symmetry. 
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Herewith, we have touched an important point in relation to the range 
of practical applicability of the t~heoretical results. Indeed, these results show 
us, for example, that once a symmetry is found one can immediately 
compute a first integral. They do not, however, give any indication about 
how such a symmetry could be found. This shows the need for a deeper 
study concerning the practical usefulness of the formulas obtained in this 
paper. 

In a forthcoming paper we therefore plan to study the problem of how 
to find useful partial differential equations for the detection of symmetries, 
together with other questions, such as: what is the relation with, e.g., the 
Killing equations known in the context of Noether's theorem (see, e.g., 
Vujanovic, 1970; Djukic, 1973), and how can one exploit the knowledge that 
a canonical symmetry is generated by a SA vector field? 
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